home *** CD-ROM | disk | FTP | other *** search
/ NeXT Education Software Sampler 1992 Fall / NeXT Education Software Sampler 1992 Fall.iso / Mathematics / Notebooks / CSOMinesCalculus / Chapter2 / ws1.tex < prev    next >
LaTeX Document  |  1992-06-26  |  4.5 KB

open in: MacOS 8.1     |     Win98     |     DOS

browse contents    |     view JSON data     |     view as text


This file was processed as: LaTeX Document (document/latex).

ConfidenceProgramDetectionMatch TypeSupport
100% dexvert LaTeX Document (document/latex) magic Supported
1% dexvert Corel 10 Texture (image/corel10Texture) ext Unsupported
1% dexvert Croteam texture file (image/croteamTextureFile) ext Unsupported
1% dexvert Text File (text/txt) fallback Supported
100% file LaTeX document text default
99% file LaTeX document, ASCII text, with very long lines (620) default
100% checkBytes Printable ASCII default
100% perlTextCheck Likely Text (Perl) default
100% siegfried fmt/281 LaTeX (Subdocument) default
100% detectItEasy Format: plain text[LF] default (weak)



hex view
+--------+-------------------------+-------------------------+--------+--------+
|00000000| 5c 64 6f 63 75 6d 65 6e | 74 73 74 79 6c 65 5b 31 |\documen|tstyle[1|
|00000010| 31 70 74 2c 66 6c 65 71 | 6e 2c 65 70 73 66 2c 63 |1pt,fleq|n,epsf,c|
|00000020| 61 6c 63 5d 7b 61 72 74 | 69 63 6c 65 7d 0a 5c 6d |alc]{art|icle}.\m|
|00000030| 61 72 6b 72 69 67 68 74 | 7b 43 68 61 70 74 65 72 |arkright|{Chapter|
|00000040| 20 32 3a 20 57 6f 72 6b | 73 68 65 65 74 20 31 7d | 2: Work|sheet 1}|
|00000050| 0a 0a 0a 5c 62 65 67 69 | 6e 7b 64 6f 63 75 6d 65 |...\begi|n{docume|
|00000060| 6e 74 7d 0a 0a 5c 42 66 | 7b 5c 53 74 61 72 5c 20 |nt}..\Bf|{\Star\ |
|00000070| 43 68 61 70 74 65 72 20 | 32 3a 20 57 6f 72 6b 73 |Chapter |2: Works|
|00000080| 68 65 65 74 20 31 20 20 | 5c 68 66 69 6c 6c 20 4a |heet 1 |\hfill J|
|00000090| 61 63 6b 20 4b 2e 20 43 | 6f 68 65 6e 20 5c 68 66 |ack K. C|ohen \hf|
|000000a0| 69 6c 6c 20 43 6f 6c 6f | 72 61 64 6f 20 53 63 68 |ill Colo|rado Sch|
|000000b0| 6f 6f 6c 20 6f 66 20 4d | 69 6e 65 73 7d 0a 0a 5c |ool of M|ines}..\|
|000000c0| 76 73 70 61 63 65 7b 31 | 2e 35 65 78 7d 0a 5c 43 |vspace{1|.5ex}.\C|
|000000d0| 62 7b 49 6e 74 72 6f 64 | 75 63 74 69 6f 6e 20 74 |b{Introd|uction t|
|000000e0| 6f 20 53 6c 6f 70 65 73 | 20 61 6e 64 20 54 61 6e |o Slopes| and Tan|
|000000f0| 67 65 6e 74 73 7d 0a 5c | 76 73 70 61 63 65 7b 31 |gents}.\|vspace{1|
|00000100| 2e 35 65 78 7d 0a 0a 5c | 6e 6f 69 6e 64 65 6e 74 |.5ex}..\|noindent|
|00000110| 20 5c 42 66 7b 53 75 67 | 67 65 73 74 65 64 20 50 | \Bf{Sug|gested P|
|00000120| 72 6f 62 6c 65 6d 73 7d | 0a 53 65 63 74 69 6f 6e |roblems}|.Section|
|00000130| 20 32 2e 31 3a 20 31 2c | 20 34 2c 20 38 2c 20 31 | 2.1: 1,| 4, 8, 1|
|00000140| 34 2c 20 31 38 2c 20 32 | 30 2c 20 32 38 2c 20 33 |4, 18, 2|0, 28, 3|
|00000150| 32 2c 20 33 34 2e 0a 0a | 5c 76 73 70 61 63 65 7b |2, 34...|\vspace{|
|00000160| 31 2e 35 65 78 7d 0a 0a | 5c 62 65 67 69 6e 7b 65 |1.5ex}..|\begin{e|
|00000170| 6e 75 6d 65 72 61 74 65 | 7d 0a 0a 5c 62 65 67 69 |numerate|}..\begi|
|00000180| 6e 7b 66 69 67 75 72 65 | 7d 5b 68 74 62 5d 0a 5c |n{figure|}[htb].\|
|00000190| 65 70 73 66 79 73 69 7a | 65 20 31 36 30 70 74 0a |epsfysiz|e 160pt.|
|000001a0| 5c 63 65 6e 74 65 72 6c | 69 6e 65 7b 5c 65 70 73 |\centerl|ine{\eps|
|000001b0| 66 66 69 6c 65 7b 77 73 | 31 70 31 2e 65 70 73 7d |ffile{ws|1p1.eps}|
|000001c0| 7d 0a 5c 63 61 70 74 69 | 6f 6e 7b 55 70 73 20 61 |}.\capti|on{Ups a|
|000001d0| 6e 64 20 64 6f 77 6e 73 | 20 69 6e 20 61 20 62 61 |nd downs| in a ba|
|000001e0| 6c 6c 6f 6f 6e 2e 7d 20 | 0a 5c 65 6e 64 7b 66 69 |lloon.} |.\end{fi|
|000001f0| 67 75 72 65 7d 0a 0a 5c | 69 74 65 6d 20 46 69 67 |gure}..\|item Fig|
|00000200| 75 72 65 20 31 20 73 68 | 6f 77 73 20 74 68 65 20 |ure 1 sh|ows the |
|00000210| 74 69 6d 65 20 68 69 73 | 74 6f 72 79 20 24 79 20 |time his|tory $y |
|00000220| 3d 20 48 28 74 29 24 20 | 6f 66 20 61 20 62 61 6c |= H(t)$ |of a bal|
|00000230| 6c 6f 6f 6e 20 66 6c 69 | 67 68 74 20 66 6f 72 20 |loon fli|ght for |
|00000240| 24 30 20 5c 6c 65 71 20 | 74 20 5c 6c 65 71 20 37 |$0 \leq |t \leq 7|
|00000250| 35 24 2e 20 20 4e 6f 74 | 65 20 74 68 61 74 20 74 |5$. Not|e that t|
|00000260| 68 65 20 63 75 72 76 65 | 20 69 73 20 5c 45 6d 7b |he curve| is \Em{|
|00000270| 6e 6f 74 7d 20 6e 65 63 | 65 73 73 61 72 69 6c 79 |not} nec|essarily|
|00000280| 20 72 65 6c 61 74 65 64 | 20 74 6f 20 74 68 65 20 | related| to the |
|00000290| 73 70 61 74 69 61 6c 20 | 70 61 74 68 20 6f 66 20 |spatial |path of |
|000002a0| 74 68 65 20 62 61 6c 6c | 6f 6f 6e 2c 20 73 69 6e |the ball|oon, sin|
|000002b0| 63 65 20 74 68 65 20 68 | 6f 72 69 7a 6f 6e 74 61 |ce the h|orizonta|
|000002c0| 6c 20 61 78 69 73 20 69 | 73 20 74 69 6d 65 20 24 |l axis i|s time $|
|000002d0| 74 24 2c 20 6e 6f 74 20 | 68 6f 72 69 7a 6f 6e 74 |t$, not |horizont|
|000002e0| 61 6c 20 64 69 73 74 61 | 6e 63 65 20 24 78 24 2e |al dista|nce $x$.|
|000002f0| 20 0a 09 5c 62 65 67 69 | 6e 7b 65 6e 75 6d 65 72 | ..\begi|n{enumer|
|00000300| 61 74 65 7d 0a 09 5c 69 | 74 65 6d 20 54 68 65 72 |ate}..\i|tem Ther|
|00000310| 65 20 61 72 65 20 74 68 | 72 65 65 20 5c 45 6d 7b |e are th|ree \Em{|
|00000320| 6c 6f 63 61 6c 20 6d 69 | 6e 69 6d 75 6d 7d 20 70 |local mi|nimum} p|
|00000330| 6f 69 6e 74 73 20 6f 6e | 20 74 68 65 20 67 72 61 |oints on| the gra|
|00000340| 70 68 20 28 6f 6e 65 20 | 69 73 20 61 74 20 74 68 |ph (one |is at th|
|00000350| 65 20 73 74 61 72 74 20 | 6f 66 20 74 68 65 20 66 |e start |of the f|
|00000360| 6c 69 67 68 74 29 2c 20 | 6c 61 62 65 6c 20 74 68 |light), |label th|
|00000370| 65 6d 20 24 61 24 2c 20 | 24 62 24 20 61 6e 64 20 |em $a$, |$b$ and |
|00000380| 24 63 24 20 61 6e 64 20 | 65 73 74 69 6d 61 74 65 |$c$ and |estimate|
|00000390| 20 74 68 65 73 65 20 76 | 61 6c 75 65 73 20 61 73 | these v|alues as|
|000003a0| 20 77 65 6c 6c 20 61 73 | 20 24 48 28 61 29 2c 20 | well as| $H(a), |
|000003b0| 48 28 62 29 2c 20 48 28 | 63 29 24 2e 20 20 44 6f |H(b), H(|c)$. Do|
|000003c0| 20 74 68 65 20 73 61 6d | 65 20 66 6f 72 20 74 68 | the sam|e for th|
|000003d0| 65 20 74 68 72 65 65 20 | 5c 45 6d 7b 6c 6f 63 61 |e three |\Em{loca|
|000003e0| 6c 20 6d 61 78 69 6d 75 | 6d 7d 20 70 6f 69 6e 74 |l maximu|m} point|
|000003f0| 73 2c 20 24 41 2c 20 42 | 2c 20 43 24 2e 0a 09 5c |s, $A, B|, C$...\|
|00000400| 69 74 65 6d 20 47 69 76 | 65 20 74 68 65 20 62 65 |item Giv|e the be|
|00000410| 73 74 20 20 64 65 66 69 | 6e 69 74 69 6f 6e 20 79 |st defi|nition y|
|00000420| 6f 75 20 63 61 6e 20 66 | 6f 72 20 74 68 65 20 63 |ou can f|or the c|
|00000430| 6f 6e 63 65 70 74 20 5c | 45 6d 7b 6c 6f 63 61 6c |oncept \|Em{local|
|00000440| 20 6d 69 6e 69 6d 75 6d | 20 70 6f 69 6e 74 7d 20 | minimum| point} |
|00000450| 69 6e 74 72 6f 64 75 63 | 65 64 20 73 6f 20 63 61 |introduc|ed so ca|
|00000460| 73 75 61 6c 6c 79 20 69 | 6e 20 74 68 65 20 70 72 |sually i|n the pr|
|00000470| 65 76 69 6f 75 73 20 71 | 75 65 73 74 69 6f 6e 2e |evious q|uestion.|
|00000480| 0a 09 5c 69 74 65 6d 20 | 53 69 6e 63 65 20 6f 75 |..\item |Since ou|
|00000490| 72 20 63 75 72 76 65 20 | 69 73 20 73 6d 6f 6f 74 |r curve |is smoot|
|000004a0| 68 2c 20 77 65 20 63 61 | 6e 20 69 6e 74 75 69 74 |h, we ca|n intuit|
|000004b0| 69 76 65 6c 79 20 61 73 | 73 69 67 6e 20 61 20 73 |ively as|sign a s|
|000004c0| 6c 6f 70 65 20 61 74 20 | 65 61 63 68 20 70 6f 69 |lope at |each poi|
|000004d0| 6e 74 20 6f 66 20 69 74 | 2d 2d 2d 65 78 63 65 70 |nt of it|---excep|
|000004e0| 74 20 66 6f 72 20 6d 61 | 79 62 65 20 74 68 65 20 |t for ma|ybe the |
|000004f0| 65 6e 64 70 6f 69 6e 74 | 73 2e 20 20 55 73 69 6e |endpoint|s. Usin|
|00000500| 67 20 74 68 65 20 6c 65 | 74 74 65 72 73 20 24 61 |g the le|tters $a|
|00000510| 2c 20 62 2c 20 63 2c 20 | 41 2c 20 42 2c 20 43 24 |, b, c, |A, B, C$|
|00000520| 20 69 6e 74 72 6f 64 75 | 63 65 64 20 61 62 6f 76 | introdu|ced abov|
|00000530| 65 2c 20 67 69 76 65 20 | 74 68 65 20 69 6e 74 65 |e, give |the inte|
|00000540| 72 76 61 6c 73 20 77 68 | 65 72 65 20 74 68 65 20 |rvals wh|ere the |
|00000550| 73 6c 6f 70 65 20 69 73 | 20 70 6f 73 69 74 69 76 |slope is| positiv|
|00000560| 65 2e 20 20 41 72 65 20 | 74 68 65 73 65 20 74 68 |e. Are |these th|
|00000570| 65 20 73 61 6d 65 20 61 | 73 20 74 68 65 20 69 6e |e same a|s the in|
|00000580| 74 65 72 76 61 6c 73 20 | 77 68 65 72 65 20 74 68 |tervals |where th|
|00000590| 65 20 66 75 6e 63 74 69 | 6f 6e 20 69 73 20 69 6e |e functi|on is in|
|000005a0| 63 72 65 61 73 69 6e 67 | 3f 0a 09 5c 69 74 65 6d |creasing|?..\item|
|000005b0| 20 43 6f 6e 73 69 64 65 | 72 20 74 68 65 20 69 6e | Conside|r the in|
|000005c0| 74 65 72 69 6f 72 20 65 | 78 74 72 65 6d 61 20 28 |terior e|xtrema (|
|000005d0| 69 2e 65 2e 20 6d 61 78 | 69 6d 75 6d 20 70 6f 69 |i.e. max|imum poi|
|000005e0| 6e 74 73 20 61 6e 64 20 | 6d 69 6e 69 6d 75 6d 20 |nts and |minimum |
|000005f0| 70 6f 69 6e 74 73 29 2e | 20 20 57 68 61 74 20 69 |points).| What i|
|00000600| 73 20 74 68 65 20 76 61 | 6c 75 65 20 6f 66 20 74 |s the va|lue of t|
|00000610| 68 65 20 73 6c 6f 70 65 | 20 66 75 6e 63 74 69 6f |he slope| functio|
|00000620| 6e 20 61 74 20 74 68 65 | 73 65 20 70 6f 69 6e 74 |n at the|se point|
|00000630| 73 3f 0a 09 5c 69 74 65 | 6d 20 57 65 20 77 61 6e |s?..\ite|m We wan|
|00000640| 74 20 61 20 63 6f 6e 64 | 69 74 69 6f 6e 20 74 68 |t a cond|ition th|
|00000650| 61 74 20 67 75 61 72 61 | 6e 74 65 65 73 20 74 68 |at guara|ntees th|
|00000660| 61 74 20 61 20 70 6f 69 | 6e 74 20 24 70 24 20 69 |at a poi|nt $p$ i|
|00000670| 6e 20 74 68 65 20 69 6e | 74 65 72 69 6f 72 20 6f |n the in|terior o|
|00000680| 66 20 74 68 65 20 64 6f | 6d 61 69 6e 20 6f 66 20 |f the do|main of |
|00000690| 61 20 73 6d 6f 6f 74 68 | 20 66 75 6e 63 74 69 6f |a smooth| functio|
|000006a0| 6e 20 67 69 76 65 73 20 | 61 20 5c 45 6d 7b 6d 61 |n gives |a \Em{ma|
|000006b0| 78 69 6d 75 6d 7d 20 76 | 61 6c 75 65 20 24 48 28 |ximum} v|alue $H(|
|000006c0| 70 29 24 2e 20 20 53 74 | 61 74 65 20 73 75 63 68 |p)$. St|ate such|
|000006d0| 20 61 20 63 6f 6e 64 69 | 74 69 6f 6e 20 69 6e 20 | a condi|tion in |
|000006e0| 74 65 72 6d 73 20 6f 66 | 20 74 68 65 20 62 65 68 |terms of| the beh|
|000006f0| 61 76 69 6f 72 20 6f 66 | 20 74 68 65 20 73 6c 6f |avior of| the slo|
|00000700| 70 65 20 5c 45 6d 7b 6e | 65 61 72 7d 20 24 70 24 |pe \Em{n|ear} $p$|
|00000710| 20 28 69 2e 65 2e 20 6a | 75 73 74 20 74 6f 20 74 | (i.e. j|ust to t|
|00000720| 68 65 20 6c 65 66 74 20 | 61 6e 64 20 72 69 67 68 |he left |and righ|
|00000730| 74 20 6f 66 20 24 70 24 | 2c 20 5c 45 6d 7b 6e 6f |t of $p$|, \Em{no|
|00000740| 74 7d 20 61 74 20 24 70 | 24 20 69 74 73 65 6c 66 |t} at $p|$ itself|
|00000750| 29 2e 20 20 0a 09 5c 69 | 74 65 6d 20 57 68 65 6e |). ..\i|tem When|
|00000760| 20 69 73 20 20 24 48 28 | 74 29 24 20 74 68 65 20 | is $H(|t)$ the |
|00000770| 62 69 67 67 65 73 74 3f | 20 20 28 54 68 65 20 62 |biggest?| (The b|
|00000780| 69 67 67 65 73 74 20 76 | 61 6c 75 65 20 6f 66 20 |iggest v|alue of |
|00000790| 24 48 28 74 29 24 20 69 | 73 20 63 61 6c 6c 65 64 |$H(t)$ i|s called|
|000007a0| 20 74 68 65 20 5c 45 6d | 7b 67 6c 6f 62 61 6c 20 | the \Em|{global |
|000007b0| 6d 61 78 69 6d 75 6d 7d | 20 6f 72 20 73 6f 6d 65 |maximum}| or some|
|000007c0| 74 69 6d 65 73 20 74 68 | 65 20 5c 45 6d 7b 61 62 |times th|e \Em{ab|
|000007d0| 73 6f 6c 75 74 65 20 6d | 61 78 69 6d 75 6d 7d 29 |solute m|aximum})|
|000007e0| 2e 20 20 20 53 69 6d 69 | 6c 61 72 6c 79 2c 20 77 |. Simi|larly, w|
|000007f0| 68 65 6e 20 64 6f 65 73 | 20 24 48 28 74 29 24 20 |hen does| $H(t)$ |
|00000800| 61 63 68 69 65 76 65 20 | 69 74 73 20 74 68 65 20 |achieve |its the |
|00000810| 67 6c 6f 62 61 6c 20 6d | 69 6e 69 6d 75 6d 3f 0a |global m|inimum?.|
|00000820| 09 5c 69 74 65 6d 20 53 | 69 6e 63 65 20 74 68 65 |.\item S|ince the|
|00000830| 20 69 6e 64 65 70 65 6e | 64 65 6e 74 20 76 61 72 | indepen|dent var|
|00000840| 69 61 62 6c 65 20 69 73 | 20 74 69 6d 65 20 24 74 |iable is| time $t|
|00000850| 24 2c 20 74 68 65 20 73 | 6c 6f 70 65 20 66 75 6e |$, the s|lope fun|
|00000860| 63 74 69 6f 6e 20 68 65 | 72 65 20 69 73 20 61 63 |ction he|re is ac|
|00000870| 74 75 61 6c 6c 79 20 76 | 65 6c 6f 63 69 74 79 20 |tually v|elocity |
|00000880| 28 72 69 67 68 74 3f 29 | 2e 20 20 20 57 68 65 6e |(right?)|. When|
|00000890| 20 69 73 20 74 68 65 20 | 76 65 6c 6f 63 69 74 79 | is the |velocity|
|000008a0| 20 30 3f 20 20 57 68 65 | 6e 20 69 73 20 74 68 65 | 0? Whe|n is the|
|000008b0| 20 76 65 6c 6f 63 69 74 | 79 20 28 6c 6f 63 61 6c | velocit|y (local|
|000008c0| 6c 79 20 61 6e 64 20 67 | 6c 6f 62 61 6c 6c 79 29 |ly and g|lobally)|
|000008d0| 20 74 68 65 20 67 72 65 | 61 74 65 73 74 3f 20 20 | the gre|atest? |
|000008e0| 20 54 68 65 20 6c 65 61 | 73 74 3f 20 20 45 78 70 | The lea|st? Exp|
|000008f0| 6c 61 69 6e 20 79 6f 75 | 72 20 72 65 61 73 6f 6e |lain you|r reason|
|00000900| 69 6e 67 20 61 6e 64 20 | 67 69 76 65 20 61 70 70 |ing and |give app|
|00000910| 72 6f 78 69 6d 61 74 65 | 20 6e 75 6d 65 72 69 63 |roximate| numeric|
|00000920| 61 6c 20 76 61 6c 75 65 | 73 20 66 72 6f 6d 20 46 |al value|s from F|
|00000930| 69 67 75 72 65 20 31 2e | 0a 09 5c 65 6e 64 7b 65 |igure 1.|..\end{e|
|00000940| 6e 75 6d 65 72 61 74 65 | 7d 0a 0a 5c 69 74 65 6d |numerate|}..\item|
|00000950| 20 5c 53 74 61 72 5c 20 | 28 32 2e 31 2e 33 36 29 | \Star\ |(2.1.36)|
|00000960| 20 50 72 6f 76 65 20 74 | 68 61 74 20 74 68 65 20 | Prove t|hat the |
|00000970| 6c 69 6e 65 20 74 61 6e | 67 65 6e 74 20 74 6f 20 |line tan|gent to |
|00000980| 74 68 65 20 70 61 72 61 | 62 6f 6c 61 20 24 79 20 |the para|bola $y |
|00000990| 3d 20 78 5e 32 24 20 61 | 74 20 74 68 65 20 70 6f |= x^2$ a|t the po|
|000009a0| 69 6e 74 20 24 28 78 5f | 30 2c 20 79 5f 30 29 24 |int $(x_|0, y_0)$|
|000009b0| 20 69 6e 74 65 72 73 65 | 63 74 73 20 74 68 65 20 | interse|cts the |
|000009c0| 24 78 24 2d 61 78 69 73 | 20 61 74 20 74 68 65 20 |$x$-axis| at the |
|000009d0| 70 6f 69 6e 74 20 24 28 | 78 5f 30 2f 32 2c 20 30 |point $(|x_0/2, 0|
|000009e0| 29 24 2e 20 20 5c 42 66 | 7b 48 69 6e 74 73 7d 3a |)$. \Bf|{Hints}:|
|000009f0| 20 20 44 72 61 77 20 61 | 20 70 69 63 74 75 72 65 | Draw a| picture|
|00000a00| 2e 20 20 4e 6f 2c 20 6e | 6f 74 20 61 20 66 65 77 |. No, n|ot a few|
|00000a10| 20 73 63 72 61 67 67 6c | 79 20 6c 69 6e 65 73 20 | scraggl|y lines |
|00000a20| 61 6e 64 20 63 75 72 76 | 65 73 2d 2d 2d 64 72 61 |and curv|es---dra|
|00000a30| 77 20 61 20 5c 45 6d 7b | 67 6f 6f 64 7d 20 70 69 |w a \Em{|good} pi|
|00000a40| 63 74 75 72 65 21 20 20 | 4c 61 62 65 6c 20 79 6f |cture! |Label yo|
|00000a50| 75 72 20 70 69 63 74 75 | 72 65 2e 20 20 54 65 6d |ur pictu|re. Tem|
|00000a60| 70 6f 72 61 72 69 6c 79 | 20 75 73 65 20 61 20 64 |porarily| use a d|
|00000a70| 69 73 74 69 6e 63 74 20 | 6c 61 62 65 6c 2c 20 73 |istinct |label, s|
|00000a80| 61 79 20 24 28 78 5f 31 | 2c 20 30 29 24 2c 20 66 |ay $(x_1|, 0)$, f|
|00000a90| 6f 72 20 74 68 65 20 74 | 61 72 67 65 74 20 70 6f |or the t|arget po|
|00000aa0| 69 6e 74 20 6f 6e 20 74 | 68 65 20 24 78 24 2d 61 |int on t|he $x$-a|
|00000ab0| 78 69 73 2e 20 20 4e 6f | 77 20 73 68 6f 77 20 74 |xis. No|w show t|
|00000ac0| 68 61 74 20 24 78 5f 31 | 20 3d 20 78 5f 30 2f 32 |hat $x_1| = x_0/2|
|00000ad0| 24 20 62 79 20 63 6f 6e | 73 74 72 75 63 74 69 6e |$ by con|structin|
|00000ae0| 67 20 61 20 73 75 69 74 | 61 62 6c 65 20 74 61 6e |g a suit|able tan|
|00000af0| 67 65 6e 74 20 6c 69 6e | 65 2e 0a 0a 5c 69 74 65 |gent lin|e...\ite|
|00000b00| 6d 20 28 32 2e 31 2e 34 | 32 29 20 57 72 69 74 65 |m (2.1.4|2) Write|
|00000b10| 20 65 71 75 61 74 69 6f | 6e 73 20 66 6f 72 20 74 | equatio|ns for t|
|00000b20| 68 65 20 74 77 6f 20 73 | 74 72 61 69 67 68 74 20 |he two s|traight |
|00000b30| 6c 69 6e 65 73 20 74 68 | 72 6f 75 67 68 20 74 68 |lines th|rough th|
|00000b40| 65 20 70 6f 69 6e 74 20 | 28 32 2c 20 35 29 20 74 |e point |(2, 5) t|
|00000b50| 68 61 74 20 61 72 65 20 | 74 61 6e 67 65 6e 74 20 |hat are |tangent |
|00000b60| 74 6f 20 74 68 65 20 70 | 61 72 61 62 6f 6c 61 20 |to the p|arabola |
|00000b70| 24 79 20 3d 20 34 78 20 | 2d 20 78 5e 32 24 2e 20 |$y = 4x |- x^2$. |
|00000b80| 20 20 44 6f 65 73 20 69 | 74 20 6d 61 6b 65 20 73 | Does i|t make s|
|00000b90| 65 6e 73 65 20 74 68 61 | 74 20 74 68 65 72 65 20 |ense tha|t there |
|00000ba0| 61 72 65 20 5c 45 6d 7b | 74 77 6f 7d 20 74 61 6e |are \Em{|two} tan|
|00000bb0| 67 65 6e 74 73 20 74 68 | 72 6f 75 67 68 20 74 68 |gents th|rough th|
|00000bc0| 65 20 70 6f 69 6e 74 20 | 28 32 2c 20 35 29 3f 20 |e point |(2, 5)? |
|00000bd0| 20 5c 42 66 7b 41 64 76 | 69 63 65 7d 3a 20 20 44 | \Bf{Adv|ice}: D|
|00000be0| 6f 6e 27 74 20 70 61 6e | 69 63 2e 20 20 44 72 61 |on't pan|ic. Dra|
|00000bf0| 77 20 61 20 70 69 63 74 | 75 72 65 20 28 75 73 65 |w a pict|ure (use|
|00000c00| 20 5c 54 74 7b 50 6c 6f | 74 7d 20 69 66 20 79 6f | \Tt{Plo|t} if yo|
|00000c10| 75 20 6e 65 65 64 20 69 | 74 29 2e 20 20 20 4c 61 |u need i|t). La|
|00000c20| 62 65 6c 20 61 20 67 65 | 6e 65 72 61 6c 20 70 6f |bel a ge|neral po|
|00000c30| 69 6e 74 20 6f 6e 20 74 | 68 65 20 70 61 72 61 62 |int on t|he parab|
|00000c40| 6f 6c 61 20 61 73 20 24 | 28 61 2c 20 79 28 61 29 |ola as $|(a, y(a)|
|00000c50| 29 20 3d 20 28 61 2c 20 | 34 61 20 2d 20 61 5e 32 |) = (a, |4a - a^2|
|00000c60| 29 24 2e 20 20 59 6f 75 | 20 63 61 6e 20 66 69 67 |)$. You| can fig|
|00000c70| 75 72 65 20 6f 75 74 20 | 74 68 65 20 73 6c 6f 70 |ure out |the slop|
|00000c80| 65 20 61 74 20 74 68 65 | 20 67 65 6e 65 72 61 6c |e at the| general|
|00000c90| 20 70 6f 69 6e 74 20 24 | 61 24 20 61 6e 64 20 68 | point $|a$ and h|
|00000ca0| 65 6e 63 65 20 77 72 69 | 74 65 20 61 6e 20 65 71 |ence wri|te an eq|
|00000cb0| 75 61 74 69 6f 6e 20 66 | 6f 72 20 74 68 65 20 74 |uation f|or the t|
|00000cc0| 61 6e 67 65 6e 74 20 6c | 69 6e 65 20 69 6e 20 70 |angent l|ine in p|
|00000cd0| 6f 69 6e 74 20 73 6c 6f | 70 65 20 66 6f 72 6d 20 |oint slo|pe form |
|00000ce0| 28 77 69 74 68 20 24 61 | 24 27 73 20 69 6e 20 69 |(with $a|$'s in i|
|00000cf0| 74 20 61 6c 6c 20 6f 76 | 65 72 20 74 68 65 20 70 |t all ov|er the p|
|00000d00| 6c 61 63 65 29 2e 20 20 | 54 68 65 72 65 20 69 73 |lace). |There is|
|00000d10| 20 6f 6e 65 20 66 61 63 | 74 20 79 6f 75 20 68 61 | one fac|t you ha|
|00000d20| 76 65 6e 27 74 20 75 73 | 65 64 2d 2d 2d 75 73 65 |ven't us|ed---use|
|00000d30| 20 69 74 20 74 6f 20 67 | 65 74 20 61 6e 20 65 71 | it to g|et an eq|
|00000d40| 75 61 74 69 6f 6e 20 66 | 6f 72 20 24 61 24 2e 20 |uation f|or $a$. |
|00000d50| 20 54 68 65 6e 20 73 6f | 6c 76 65 20 66 6f 72 20 | Then so|lve for |
|00000d60| 24 61 24 20 61 6e 64 20 | 0a 20 70 6c 75 67 20 62 |$a$ and |. plug b|
|00000d70| 61 63 6b 20 69 6e 74 6f | 20 74 68 65 20 74 61 6e |ack into| the tan|
|00000d80| 67 65 6e 74 20 65 71 75 | 61 74 69 6f 6e 2e 0a 0a |gent equ|ation...|
|00000d90| 5c 6e 6f 69 6e 64 65 6e | 74 20 46 6f 72 20 74 68 |\noinden|t For th|
|00000da0| 65 20 72 65 61 6c 6c 79 | 20 62 72 61 76 65 3a 20 |e really| brave: |
|00000db0| 72 65 70 6c 61 63 65 20 | 74 68 65 20 70 6f 69 6e |replace |the poin|
|00000dc0| 74 20 28 32 2c 20 35 29 | 20 62 79 20 61 20 67 65 |t (2, 5)| by a ge|
|00000dd0| 6e 65 72 61 6c 20 70 6f | 69 6e 74 20 24 28 78 5f |neral po|int $(x_|
|00000de0| 30 2c 20 79 5f 30 29 24 | 2e 0a 0a 5c 69 74 65 6d |0, y_0)$|...\item|
|00000df0| 20 28 32 2e 31 2e 34 33 | 29 20 46 69 6e 64 20 74 | (2.1.43|) Find t|
|00000e00| 68 65 20 70 6f 69 6e 74 | 20 6f 6e 20 74 68 65 20 |he point| on the |
|00000e10| 70 61 72 61 62 6f 6c 61 | 20 24 79 20 3d 20 78 5e |parabola| $y = x^|
|00000e20| 32 24 20 74 68 61 74 20 | 69 73 20 63 6c 6f 73 65 |2$ that |is close|
|00000e30| 73 74 20 74 6f 20 74 68 | 65 20 70 6f 69 6e 74 20 |st to th|e point |
|00000e40| 28 33 2c 20 30 29 20 62 | 79 20 75 73 69 6e 67 20 |(3, 0) b|y using |
|00000e50| 74 68 65 20 69 6e 73 69 | 67 68 74 20 74 68 61 74 |the insi|ght that|
|00000e60| 20 66 6f 72 20 74 68 69 | 73 20 70 6f 69 6e 74 2c | for thi|s point,|
|00000e70| 20 74 68 65 20 6c 69 6e | 65 20 66 72 6f 6d 20 28 | the lin|e from (|
|00000e80| 33 2c 20 20 30 29 20 74 | 6f 20 74 68 65 20 70 61 |3, 0) t|o the pa|
|00000e90| 72 61 62 6f 6c 61 20 77 | 69 6c 6c 20 62 65 20 5c |rabola w|ill be \|
|00000ea0| 45 6d 7b 6e 6f 72 6d 61 | 6c 7d 20 74 6f 20 74 68 |Em{norma|l} to th|
|00000eb0| 65 20 70 61 72 61 62 6f | 6c 61 2e 20 20 4e 6f 74 |e parabo|la. Not|
|00000ec0| 65 3a 20 20 79 6f 75 20 | 68 61 76 65 20 74 6f 20 |e: you |have to |
|00000ed0| 73 6f 6c 76 65 20 61 20 | 63 75 62 69 63 20 65 71 |solve a |cubic eq|
|00000ee0| 75 61 74 69 6f 6e 20 74 | 6f 20 66 69 6e 64 20 74 |uation t|o find t|
|00000ef0| 68 65 20 63 6c 6f 73 65 | 73 74 20 70 6f 69 6e 74 |he close|st point|
|00000f00| 2d 2d 2d 68 65 72 65 2c | 20 79 6f 75 20 63 61 6e |---here,| you can|
|00000f10| 20 70 72 6f 62 61 62 6c | 79 20 67 75 65 73 73 20 | probabl|y guess |
|00000f20| 74 68 65 20 72 65 6c 65 | 76 61 6e 74 20 72 6f 6f |the rele|vant roo|
|00000f30| 74 2c 20 62 75 74 20 69 | 66 20 6e 6f 74 20 75 73 |t, but i|f not us|
|00000f40| 65 20 5c 4d 6d 61 2e 0a | 0a 5c 69 74 65 6d 20 46 |e \Mma..|.\item F|
|00000f50| 6f 6c 6c 6f 77 69 6e 67 | 20 75 70 20 6f 6e 20 70 |ollowing| up on p|
|00000f60| 72 65 76 69 6f 75 73 20 | 70 72 6f 62 6c 65 6d 73 |revious |problems|
|00000f70| 3a 0a 09 5c 62 65 67 69 | 6e 7b 65 6e 75 6d 65 72 |:..\begi|n{enumer|
|00000f80| 61 74 65 7d 0a 09 5c 69 | 74 65 6d 20 41 72 65 20 |ate}..\i|tem Are |
|00000f90| 74 68 65 72 65 20 61 6c | 77 61 79 73 20 65 78 61 |there al|ways exa|
|00000fa0| 63 74 6c 79 20 5c 45 6d | 7b 74 77 6f 7d 20 74 61 |ctly \Em|{two} ta|
|00000fb0| 6e 67 65 6e 74 20 6c 69 | 6e 65 73 20 66 72 6f 6d |ngent li|nes from|
|00000fc0| 20 61 20 67 65 6e 65 72 | 61 6c 20 70 6f 69 6e 74 | a gener|al point|
|00000fd0| 20 24 28 78 5f 30 2c 20 | 79 5f 30 29 24 20 74 6f | $(x_0, |y_0)$ to|
|00000fe0| 20 74 68 65 20 70 61 72 | 61 62 6f 6c 61 20 24 79 | the par|abola $y|
|00000ff0| 20 3d 20 78 5e 32 24 3f | 0a 09 5c 69 74 65 6d 20 | = x^2$?|..\item |
|00001000| 49 73 20 74 68 65 72 65 | 20 61 6c 77 61 79 73 20 |Is there| always |
|00001010| 65 78 61 63 74 6c 79 20 | 5c 45 6d 7b 6f 6e 65 7d |exactly |\Em{one}|
|00001020| 20 6e 6f 72 6d 61 6c 20 | 6c 69 6e 65 20 66 72 6f | normal |line fro|
|00001030| 6d 20 61 20 67 65 6e 65 | 72 61 6c 20 70 6f 69 6e |m a gene|ral poin|
|00001040| 74 20 24 28 78 5f 30 2c | 20 79 5f 30 29 24 20 74 |t $(x_0,| y_0)$ t|
|00001050| 6f 20 74 68 65 20 70 61 | 72 61 62 6f 6c 61 20 24 |o the pa|rabola $|
|00001060| 79 20 3d 20 78 5e 32 24 | 3f 0a 09 5c 65 6e 64 7b |y = x^2$|?..\end{|
|00001070| 65 6e 75 6d 65 72 61 74 | 65 7d 0a 0a 0a 5c 69 74 |enumerat|e}...\it|
|00001080| 65 6d 20 5c 42 66 7b 48 | 6f 6e 6f 72 20 50 72 6f |em \Bf{H|onor Pro|
|00001090| 62 6c 65 6d 7d 3a 20 20 | 49 6e 20 66 69 6e 64 69 |blem}: |In findi|
|000010a0| 6e 67 20 74 68 65 20 60 | 60 70 68 79 73 69 63 61 |ng the `|`physica|
|000010b0| 6c 6c 79 20 73 65 6e 73 | 69 62 6c 65 27 27 20 73 |lly sens|ible'' s|
|000010c0| 6f 6c 75 74 69 6f 6e 20 | 74 6f 20 74 68 65 20 61 |olution |to the a|
|000010d0| 73 74 65 72 6f 69 64 20 | 70 72 6f 62 6c 65 6d 20 |steroid |problem |
|000010e0| 79 6f 75 20 6d 61 79 20 | 68 61 76 65 20 6e 6f 74 |you may |have not|
|000010f0| 69 63 65 64 20 74 68 61 | 74 20 74 68 65 72 65 20 |iced tha|t there |
|00001100| 61 72 65 20 61 20 6c 6f | 74 20 28 69 6e 66 69 6e |are a lo|t (infin|
|00001110| 69 74 65 6c 79 20 6d 61 | 6e 79 20 61 63 74 75 61 |itely ma|ny actua|
|00001120| 6c 6c 79 29 20 6f 66 20 | 72 6f 6f 74 73 20 69 6e |lly) of |roots in|
|00001130| 20 74 68 65 20 69 6e 74 | 65 72 76 61 6c 20 24 5b | the int|erval $[|
|00001140| 30 2c 20 73 20 3d 20 31 | 30 30 30 5d 24 2e 20 20 |0, s = 1|000]$. |
|00001150| 46 69 6e 64 20 74 68 65 | 20 6c 61 72 67 65 73 74 |Find the| largest|
|00001160| 20 74 77 6f 20 72 6f 6f | 74 73 20 6c 65 73 73 20 | two roo|ts less |
|00001170| 74 68 61 6e 20 24 73 20 | 3d 20 31 30 30 30 24 20 |than $s |= 1000$ |
|00001180| 61 6e 64 20 65 78 70 6c | 61 69 6e 20 74 68 65 69 |and expl|ain thei|
|00001190| 72 20 73 69 67 6e 69 66 | 69 63 61 6e 63 65 2e 20 |r signif|icance. |
|000011a0| 20 20 46 75 72 74 68 65 | 72 20 69 6e 76 65 73 74 | Furthe|r invest|
|000011b0| 69 67 61 74 69 6f 6e 73 | 20 61 6e 64 20 64 69 73 |igations| and dis|
|000011c0| 63 75 73 73 69 6f 6e 73 | 20 61 6c 6f 6e 67 20 74 |cussions| along t|
|000011d0| 68 69 73 20 6c 69 6e 65 | 20 61 72 65 20 77 65 6c |his line| are wel|
|000011e0| 63 6f 6d 65 2e 0a 0a 0a | 5c 65 6e 64 7b 65 6e 75 |come....|\end{enu|
|000011f0| 6d 65 72 61 74 65 7d 0a | 5c 65 6e 64 7b 64 6f 63 |merate}.|\end{doc|
|00001200| 75 6d 65 6e 74 7d 0a | |ument}. | |
+--------+-------------------------+-------------------------+--------+--------+